Stichwortverzeichnis Home Inhaltsverzeichnis Gesteine/Mineralien im Gasteinertal, Glossar
SM - Gesteine/Mineralien im Gasteinertal: trigonal
Minerale, Gasteinertal Minerale Gasteins
Symmetrieklassen

Kristallsystem: trigonal

Die 7 Kristall-Systeme werden aufgrund der unterschiedlichen Winkel der Achsen und den Verhältnissen der Achsenlänge charakterisiert. Hier soll das trigonale Kristallsystem vorgestellt werden, wobei hier die Länge der Achsen gleich sind, die Winkel allerdings alle vom rechten Winkel (90°) abweichen.

TRIGONAL - Charakteristisch ist hier die 3-zählige Symmetrieachse, was in der niedrigsten Symmetrie einer - trigonalen Pyramide - gleichkommt. Kommt ein Symmetriezentrum hinzu, entsteht ein Rhomboeder. Insgesamt kennt man 7 Symmetrie-Klassen. Die allgemeinen Kristallformen sind die trigonale, ditrigonale und hexagonale Pyramide und Dipyramide, das trigonale Trapezoeder und das Rhomboeder. Sie gehören zu den wirteligen Kristallen.

Das trigonale Kristallsystem

Pfeil

t r i g o n a l

- Die charakteristischen Formen dieses Kristallsystems -
Kristallsysteme, Skizze Trigonale
Pyramide
3
Trigonal-pyramidale Symmetrieklasse - Hemimorphie der trigonalen Tetartoedrie! - Es existiert lediglich eine 3-zählige Symmetrieachse. Die Flächenform allgemeiner Lage entspricht einer trigonalen Pyramide.
- Symmetrie: 1 trigonale Symmetrieachse.
- Beispiel: Nickelsulfat
Rhomboeder Rhomboeder
3 (inv)
Rhomboedrische Symmetrieklasse - Hexagonal-rhomboedrische Tetartoedrie! - Kommt zur 3-zähligen Symmetrieachse ein Symmetriezentrum hinzu, so entstehen 6 Flächen in allgemeiner Lage, drei Projektionspunkte liegen auf der Oberseite und 3 entsprechend um 60° verdreht auf der Unterseite, was einer 3-zähligen Inversionsachse entspricht.
Flächenkombinationen bestehen aus dem Basispinakoid und dem hexagonalen Prisma.
- Symmetrie: 1 trigonale Symmetrieachse (Inversionsachse); 1 SZ.
- Beispiele: Dolomit, Ilmenit, Dioptas - Phenakit - Willemit
Trapezoeder, trigonal Trigonale
Trapezoeder
32
Trigonal-trapezoedrische Symmetrieklasse - Hexagonal-trapezoedrische Tetartoedrie! - Liegt zur 3-zähligen Achse senkrecht dazu noch eine 2-zählige, so ergeben sich daraus 2 weitere 2-zählige Achsen. Die allgemeine Form heißt Trapezoeder. Wieder finden sich 3 Flächen oberhalb und 3 Flächen unterhalb, wobei diese aber nicht um 60°, sondern um beliebige Winkel einander versetzt sind. Mögliche Formen sind dabei das trigonale Prisma (offene Form), ditrigonale Prismen und die trigonale Dipyramide.
- Symmetrie: 1 trigonale und 3 digonale Symmetrieachsen.
- Beispiele: Tiefquarz - Cinnabarit
Pyramide, ditrigonal Ditrigonale
Pyramide
3m
Ditrigonal-pyramidale Symmetrieklasse - Hemimorphie der rhomboedrischen Hemiedrie! - Wird eine 3-zählige Symmetrieachse mit einer Symmetrieebene so kombiniert, dass die Achsen in einer Ebene liegen, dann entstehen 3 Symmetrieebenen, die sich in einem Winkel von 60° schneiden. Die allgemeine Form ist eine ditrigonale Pyramide.
- Symmetrie: 1 trigonale Symmetrieachse; 3 Nebensymmetrieebenen.
- Beispiele: Turmalin
Skalenoeder, ditrigonal Ditrigonale
Skalenoeder
3(inv) 2/m
= 3(inv)m
Ditrigonal-skalenoedrische Symmetrieklasse - Hexagonal-rhomboedrische Hemiedrie! - Kommen zur ditrigonal-pyramidale Symmetrieklasse (3m) noch 2-zählige Achsen winkelhalbierend zu den Symmetrieebenen hinzu, so liegen eine 6-zählige und drei 2-zählige Symmetrieachsen vor, sowie 3 Nebensymmetrieebenen und ein Symmetriezentrum. Das Skalenoeder ist eine geschlossene Form, bei der je 6 Flächen auf der Ober- und Unterseite zu zweien paarweise zusammenliegen.
- Symmetrie: 1 hexagonale Symmetrieachse, 3 Nebensymmetrieebenen, 1 SZ.
- Beispiele: Kalkspat (besteht aus mehreren Formen) - Siderit - Rhodochrosit - Korund, Hämatit, Arsen, Antimon, Wismut
Dipyramide, ditrigonal Ditrigonale
Dipyramide
6(inv)m2
Ditrigonal-dipyramidale Symmetrieklasse - Trigonale Hemiedrie! - Nehmen wir zur ditrigonal-pyramidale Symmetrieklasse (3m) oder zur Klasse 32 noch eine horizontale Symmetrieebene hinzu, so entsteht eine Doppelpyramide. Es existieren eine 3-zählige und drei 2-zählige Symmetrieachsen, sowie mehrere Spiegelebenen und zwar 1 Haupt- und 3 Nebensymmetrieebenen. Ein Symmetriezentrum existiert nicht.
Flächenkombinationen bestehen aus dem Basispinakoid, hexagonale, trigonale und ditrigonale Prismen und ebensolche Dipyramiden.
- Symmetrie: 1 trigonale und 3 digonale Symmetrieachsen; 1 Haupt- und 3 Nebensymmetrieebenen.
- Beispiele: Benitoit
Dipyramide, trigonal Trigonale
Dipyramide
6(inv)
Trigonal-dipyramidale Symmetrieklasse - Trigonale Tetartoedrie! - Es existiert nur eine 3-zählige Symmetrieachse mit einer senkrecht darauf stehenden Symmetrieebene.
- Symmetrie: 1 trigonale Symmetrieachse; 1 Hauptsymmetrieebene.
- Beispiele: kein Vertreter bekannt (theoretische Symmetrie).
- Flächenformen des trigonalen Systems -
Prisma, trigonal Trigonales
Prisma
{ hki(inv)0 }
Alle Klassen des trigonalen Systems!
- Beispiel:
Prisma, ditrigonal Ditrigonales
Prisma
{ hki(inv)0 }
Klassen: 6(inv)3m und 32!
- Beispiel:

Weitere Kristallsysteme finden sich auf den Seiten:
kubisch - hexagonal - rhombisch - tetragonal - tri-/monoklin

Hauptseite
Mineralien : Bilder - Mineralien, Gasteinertal Home Inhaltsverzeichnis Gesteine, Gasteinertal - Gesteine : Bilder

Home Stichwortverzeichnis Inhaltsverzeichnis Tiere Pflanzen Mineralien-Klassen Ökologie Geologie Biotope

Gesteine/Mineralien im Gasteinertal: trigonal
© 10.1.2004 by Anton Ernst Lafenthaler
s-kritri